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CHARAGTERISTICS OF CERTAIN WINGS OF
FINITE DIMENSIONS

This is a translation of an article written .
7 S. V. Vallander in Vestnik Leningradskogo
Universiteta (Herald of Leningrad University),
No. 19, Ser Mat, Mekli i Astron, No. 4, 1959,

pages 106-112 _ o

"We are golng to preaadt here a method of computing the
aerodynamic characteristios of & .psartisular type of wing of
finite span under the conditinns of a. streamlined, gaseous
flow, =

If we disregard the problem %f the interference bet-
ween the wing and the fuselage, these wings c&n be com ted
to within any degree of prec sion by using the method here of-
fer@d. ' ot h

No examples of the computation of such wings of finite
span cean be found in the contemporary literature-on gas dyna-
mics. . .

1. Shapes of Wings Examined :

Let us suppose that the airfoil ABCDA in the drawing
inserted representa the cross ‘ : :

section of the wing at the =
points of contact with the fu-
selage, while one alrfoll cor-
responds to the profile of the
same wing in its oconsolic eross
gection, ' .
We shall examine such
winge ACHF, whose upper and
lower surfaces combine to form
the side surface of a trunok-

ted oone with the bases ABCDA
and PGHKF and the apex at E,

And vwe shall assume that the




consolic cross section was chosen in a manner which either
eliminated, or minimized to within a neghigible margin, the
effect of the consolic cross section, BSpecifically, thls

will always be true if the consolic cross sectlon degenera-
tes into the geometrlc apex E of the wing.

2. Differentisl Equations a@d*Boundary,Condi@lons.

The particular shape of ‘the win%s examined here imme~ -
‘diately suggests that the problem of s reamlined flow shouléd
‘be considered in & manner reflecting the speclal wing=shape,

For, certainly, all polnts of any straight line from
the apex E of this cone, whose slde surface 1s the surface
of the wing, are oing to be in identlcal position relative
to the w s surface and the oncoming flovw,

It 1s natural, therefore, to expect that under stream-
1ining the hydrodynamic elementis shall be constant along
each such line, S .

-  Furthermore, it is natural to expect that the resul-
ting surfaces of strong disruption of the streanm shall also
pe conicsl surfaces with apex;at the same point E of the
streamlined-fluxed cone of thé wing,

To verify the valldity of these expectations, we shall
pass from the rectangular coordinates x, y, z to different
coordinates., The origin of that system will coincide with E,
gutfwe :?all introduce two new coordinates & and ¥ acoording

o formulas ' :

!-‘!'_.’ n-z'.. (2.1)

, Let us now consider the system of differential equa-
tions of motion, and transform to the coordinates £ and %
with the assumptlion that the gas-dynamic’ elements depend ex-
clusively on these coordinates.

Thus, we obtain the following system of differential
equations: o

(vi'- o) :’ + (vy —~ “’ﬂ)%"" - 'l"zv ' (2,.2)
(- HY Hoy—eF=—3 & @Y
O — oAU+, —oP= (1T +1E). @9

(0~ o) S gp + (oo A IRr +3F + R~ IF -1 =0. 35
(oa—v g (5)+ oy —wagz(b)=0. @29




[R—

! Since our system contains none of the x, y, %z coordis
nates, but only their combinations in terms of the magnitu-
des £ and n , We can seek solutions depending only on £ and

n- This 1s sufficient to juetify our expectations, since

14 is obvlous that with the actual conlcity of the streamli-
ned surfaces and the assumed ‘corilcity of the surfaces of
strong disruption in the gaseous flux we shall be able to

express all boundary condltions in the terms of these new
- gcoordinates § and O

e -
Let the equation oftthe streamlined cone be:
| 2Lamd(Z),
1=9(3) @n

On computing the direction cosines of the normal to
the surface of the ocone with coordinate axes X, y, z, and on
equating the normal component of the wing's veloclty to zero,
we shall obtain the streamlining condition in the form:

Uy — N0y = (U — to,) 9‘:9 . (2,8)
‘The condition (2,8) is expressed in terms of ¥ andy,
which justifies our expectations.

We shall pass now to the conditions on the surface of
the strong disruptlon. ILet '

LX) | (29)

be £he equation of this surface. g

The x axls will be directed in the direction of the
flow. We shall compute the directlon cosines of -the normal
to that surface and substitute these in the expressions hol-
ding for disruption surfaces,  The relatlon on the surface of
strong disruption will have the forms: *

S : 1 - .
'x."vl""m'v'[‘V,"'+x,+fu'~‘)‘.—..a'!] (2'10)
o=t b [V —a} @211)

' mV;P 1 |+X“+(gxr‘_‘)1 ] L)

2 13- x*
LS L imml-x.— [V"I+X"+(gx'..‘)’~¢'.]'.. (2,12)*
in W x Y 213
h’m" ] I+X'.+('X'—1D’~ 2‘ a8, ’ (2, )
h___ - -
h"'....l+ 2 ( ).'+X'+(¢X';-gp' (2,14)
Ftig

#The sign in Tormulsa (2,12) will depend on the choice of the
direction of the axis.




I The index 2 in these relations corresponds to the hy-
drodynamio elements after the disruption, and the index 1 to
the values prior to the disruption. o

These relations (2,10) - (2,14) are again expressed ln
the terms § and M ; consequently, our expectatlons are fully
justified,” S _

In reference to all the above facts, we conclude that
our investigations must be applied in the plane of these two
coordinates SE,'))). " In this plane we shall have to integrate
the system of equations (2,2) to (2,6) with the boundary con-
‘dition (2,8) on the profile and with the boundary conditions
(2,10) to (2,14) on the stlll unknown 1line of disruption.

Should bhe system of the equations (2,2) to (2,6) turn
out to be hyperbolic, then the problem can be solved by ap=-
plying the characterlstic method in the numerical integratlon
of hyperbolic systems. '

3, The Type of the System'of Equatioﬁs’and Their Charace
teristlcs :

"If the equation L , : :
A=) @

is the characteristic equation of the‘system (2,2) - (2,6),
the usual methods will lead to the following equation for the

determination of the characteristic directions (characterized
by angular coefflcient i%?‘ )

'A. o’ op - %’!‘“l 0 ’
0, A, o, %. v 0
S o' 0. A. . ‘} (‘ ‘7:—‘) » 0 - 0. ‘ (302)
& a0 1
— i » ‘. t R ‘ . Ov ’ A
o 0 : 0 A,  ~aA

where .
A — %(Vx"e"’:) + (vy — 705)

and a is the velocity of the sound. .
Equation (3,2§ 18 of the fifth degree in £X . In

solving it we shall obtain five roots,
On expanding the determinant (3,2) and solving the
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lsulting equation, We find that it has onl¥ three distipct
roots, because one of these roots occurs three times,

' For the roots of the characteristic determinant, we
obtalin the expressionb: ‘

(!3) - (9 — vV (0y — v,7) — 6%y + |
PPk P T 3
— AP (v — v+ (o — -+ Y) | (39)
T e—edR -+ +y) ,
‘ﬂ ' Oy = 0,7, . .
-(7‘)&&5’- = SR (3.9

The roota' of the characteristlic determinant ( ﬁ)a,-f,r
are always real, while the roots of (£§),will be real if
the inegualitly

Ox

(Or — 80,8 + (0, = 0,0 + (0,3 — w8 |
s «;_; (o —ofP 5 o, 3.5

nolds, In that case, the aystem (2,2) - (2,6) will be per-
feetly hyperbollc and the characteristic method can bhe &ap=-
plied. T \

' To obtain an idea &s to the possible reglons of com-
plete hyperbolicity for the system %2,2) - (2,6), we shall
consider a flow having constant hydrodynamle elements and
moving along the x axis with the supersonic veloclty Vi
while the velocity of sound is &y, ™

- In this case, the 1nequallty (3,5) shall be trans-
formed into the inequality

(mgﬁ —N<l | (3.6)

Thls inequallty holgh in the region between the two
branches of the hyperbola. The region of perfect hyperbo-
lieity will expand as Mach's number increases., When Mach's
number 1is less than 1, this region vanishes.

4, Relation on the Characteristics and Application of
the Charscteristic Method . ’

The relations on the characteristics are obtalned in
the usual way. The roots of the characterlstlc equation are
substituted sequentially into the characteristlc system,
containing partial derivatives of the unknown functions with
respect to one independent variable, The resulting relations
do not determine all partial derivatives, but the latter can
be disregarded, As & result of the exclusion of these par-
tial derivatives, we obtain the relations on the characterls~
tics. '

There will be five independent relatlions.
We will get onme relation by excluding the partial de-

rivatives from the formulas which we obtalned by substitutling
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'the roots(iﬂﬁ?in the characterigtlc system; and three for-|
gulas by substituting the roota(ff)s« s in ihe same system.

As a result of the computations we get the following
relations on the gharasterlstlcst o » |
! (e !’,y - q0,)du, - (v~ b05) 00y + (0, —Loy) dogm p
= 5 {R 1 —to,) — 8 (1+ 1) —(oy— o) (0 — o) + a%) 7, (1)

(92 = toy) doy + (5 — Wi doy=—F +2)
‘W:""b,) "i,‘+'(01"“ lv,) d”,’ge’!' (4'3) "
. ,.dp-aldp' (4’4)

= The relation (4,1) holds along the characteristics
with the inolinatinn#8=(#),.a. Formulss (4,2) te (4,4)
hold on characteristics with the inclination «(8B)3245
" @iven the five relations on the characterisilcs and

the boundary conditions, we oan replace these by formulas
in finite differences and thus find the five unknown funce-
tions vy, Vys V2, P and p.’ _ '

The order in which these functions will be deter-
mined will correspond, in general, to the order in which
solut ions of the planar whirlwind problem of gas dynamics
are found., Accordingly, see any adequate textbook on gas
dynamics, -

No difficulties in principle will be encountered;
thus, there is no need to describe in detail the applica-
tion of these operations to & practical problem.

5. Wings of Low CQnicity and & 8light Arrow-Form.

If the wing in question has & low conlcity, and 1s
only slightly arrow-shaped, the values of £ and 7 in the
velocity reglons affecting the values of the hydrodynamie
elements upon the surface of the wing shall be small,

Let us assume that in these reglons the values of §
and » are such that their squares can be disregarded com=-
pared to unity; let us consider our problem under this
conditon. ‘ .

It is clear that for such wings in these reglons
vwhere the values of the hydrodynamic elements depend on the
wing, the order of the magnitude vz and of its partial de-
rivatives will be the same as the order of the magnitudes
vl and JVin|, where Vy 18 the velocity of unperturbed flow.

“Besause of this conditon, we can consider the magnl-
tude vx-}v; a8 equal 10 Vx* to within the acsuracy assumed in
the discussion. Simultaneously,$ sndnfy will be ne-
gligible in comparison with magnitddes of the order of Vi.

Taking the above into consideration, we ghall get
¥and the magnitude )y »vz &8 equal toVy .
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'instead of the .system (2,2) 4L(2,6), the system: ~

G ALY Sl O 6
(S A s 1 o
eRreR-LiEad). . e»
|agr st R+ =0 6o
o Er Al ee

‘ Equatione (5,1), (5,2), (5,4), and (5,5), considered
as & whole, are the same as a system of equations for the
planar motlon of a gas. - And as soon &s these equatlions are
integrated, the integration of (5,3) can be performed quite

easlly. R .
" The streamlining condition (2,8) is the same in this
case as the streamlining cond}tion in a planar flow problem,

and has the form . : ‘
{Wffd%f' e (58

And, finally, the boundary conditionms (2,10) to (2,14)
assume, under the assumptions made,-the following forms:

— Vi- 51 v, [V?;—f%r—c?] . ®7)
w=chur[ie-d. . e»
iv:.:—ir%%lffi——w"[\ﬁr%*ﬁi]. Y )
| p:-;-r';-.p. [WTﬁ:f-%';'—!a?] S 3

py == d . (5,11)

A1 2 (a2 14+ X"
= = (U

The conditions (5,7), (5,8), (5,10) and (5,11) are the
aamglas the corresponding boundary conditions of a planar
problem,

Conditlon (5,9) must be used to determine the guantity

w;. We obtain the quantity vy by integrating the equation
%5,3;, using the boundary condition obtained from condition
99). ‘

Thus, we conglude that, in order to solve the problem

of streamlining for a wing of low conicity and a slight arrow-
form, it suffices to solve the problem of streamlining of a

wing of an infinite span having a profile % = &(§).
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‘ Then, we transform from the variables & and

to the varilebles x, y, z. Thus, the computatlion of the ae=-
rodynamical characterlistics of the wings under conslderation
differs only negligibly from the computation of the aerodyna-
mic characteristics for wings of infinite span,

'

END

2023



FOR REASONS OF SPEED AND ECONOMY

THIS REPORT HAS BEEN REPRODUCED

ELECTRONICALLY DIRECTLY FROM OUR
_CONTRACTOR' S TYPESCRIPT

This publication was prepered under contract to the
UNITED STATES JOINT PUBLICATIONS RESEARCH SERVICE,
e federal government organization established
to service the translation and research needs
of the verious government departments.




